skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cotter, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The inclusion of rubber in concrete has been suggested and used in recent research. However, the reason for the inclusion of rubber into concrete is typically the need to offset the carbon footprint of concrete and other environmental concerns. The research presented here indicates that the inclusion of rubber into concrete allows for the concrete to accept fasteners and withstand withdrawal, or pullout, of the fasteners, similar to the function of wood. We refer to this as making the concrete “nailable”, in that the concrete can be nailed together either by hand or with tools designed to be used with wood. While other methods have been used to make concrete nailable, this method is novel as no known research exists indicating that there exists a rubber concrete mix that provides similar withdrawal strength as wood. Testing indicates that the concrete can be produced at a low cost due to the inclusion of the low-cost rubber infill with reinforcement wire. The result is a reinforced concrete with an allowable load that is 13% greater than in spruce and a withdrawal force up to 25% greater than the maximum in spruce. The intended function of this material is replacement of treated lumber. The proposed rubber concrete, which is a reinforced concrete, is anticipated to have a service life of 50–100 years, while treated lumber decks in the Southeastern United States have been surveyed to have an average life of only 10 years due to environmental degradation. This leads us to conclude that if a deck were to be constructed of this nailable rubber concrete, it would last approximately five times longer in a temperate environment, such as the Southeastern United States. This improvement can be provided at a relatively low cost while providing an alternative that both prevents the use of arsenic- and copper-containing compounds used in treated lumber and provides an additional recycling method for tires. 
    more » « less
  2. Glass-reinforced composite columns (GRCCs) may provide an economical alternative to conventional construction materials due to the superior cost to strength provided by bulk glass. Prior to this study, no GRCCs had been physically tested, having previously relied on simulation to predict the behavior of the columns. This study utilizes polyurethane resin bonds in place of sizing agents for adherence between materials, a key requirement for the development of the structural system of the columns. The unreinforced control column failed at a load of 11.2 kN while the maximum GRCC load was 30.8 kN. This indicates that glass can be loaded to 123 MPa before the onset of delamination failure of the GRCCs. Maximum shear stress of 53 MPa was reached, exceeding the 11 MPa required for practical GRCCs. Buckling of the columns occurred at 30.8 kN, below the theoretical maximum of 64.4 kN. Through gradual delamination, the column slowly transferred to an unbonded condition, causing buckling failure. Delamination is unlikely to occur in practical GRCCs due to the lower required shear strengths. 
    more » « less
  3. null (Ed.)